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Abstract  

We consider the two-body problem of general relativity taking into account the retarda- 
tion of interactions. The equations of motion are shown to be simplified, and this enables 
one to neglect the effects of heredity. The problem of validity of the approximations 
involved is considered in the extended-particle formalism. It is shown that under the 
correct treatment the self-interaction terms do not lead to unphysical solutions. 

1. Introduction 

The equations of motion of general relativity in the weak-field (or 'fast- 
motion ')  approximation were dealt with by many authors (Bennewitz & 
Westpfahl, I971 ; Bertotti & Plebanski, 1960; Kerr, 1959; Kuhnel, 1964; 
Havas & Goldberg, 1962; Stephani, 1964). In these papers the solutions of  
the field equations are represented as the expansion in powers of  the gravita- 
tional constant under the condition that the field is weak. tt should be noted 
that such a consideration is not necessarily restricted to the case when the 
motion is a straight-line uniform one (Havas & Goldberg, 1962; cf. Infeld & 
Plebanski, 1960). It is known that if we consider the integrability conditions 
of the Einstein equations in the linear approximation as the exact ones, the 
uniform motion will result. However, we should not confine ourselves to the 
non-accelerated motion at the first step of  the approximation, if we take into 
account that the conservation identities should be satisfied approximately 
(Havas & Goldberg, 1962). The explanation o f  this fact lies in the incorrect 
nature of  the problem of  finding the approximate equations of  motion:  small 
deviations of  the metric in the integrability conditions may result in significant 
changes of  the motion considered on sufficiently large intervals of  time. In 
order to obtain satisfactory equations of  motion one must use sufficiently 
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high approximations of the metric, e.g. approximations of the same order (not 
the previous approximations) as that of the equations of motion. This leads 
to a rather complicated functional-differential structure of the equations: 
they contain the retarded arguments depending upon the unknown functions, 
the second-order equations contain the integro-differential 'tail' terms (Kuhnel, 
1964; Bertotti & Plebanski, 1960; Stephani, 1964). 

In the present paper we shall show that the equations of motion can be 
simplified in the weak field approximation. This enables one to neglect the 
effects of heredity in the following sense: after the transformations we obtain 
the ordinary differential equation and the terms depending upon the past 
history contribute only to the higher approximations. The transformations 
involve the expansion in powers of the retardation. This operation is not 
always rigorous, as the inspection of the self-action terms shows, e.g. it may 
lead to unphysical solutions analogous to 'runaway' solutions of the Dirac 
equation for point electron. It is shown that in the correct treatment these 
solutions do not arise. 

We derive the equations of motion of the first approximation in the case 
of two extended bodies; the transition to the N-body problem is analogous. 
Remark are made concerning the structure of the second approximation. The 
effects of rotation are not considered. 

2. The Equations of  Motion in the Weak-FieM Approximation 

Consider the Einstein equations 

G mn = - k T  mn (2.1) 

where 

T mn = T ~  n + S m n  (2.2) 

~ .  o.. dZr~ dZ~ 
T~'n(x)= f d 3 y p ( f ) 8 ( 2 - z t x  ))~x ~ ds (2.2a) 

here x = (2, x°( (we take c = 1), m, n = 1, 2, 3, 0; Z, m, = (Z~ (x°), Z ° (x°)), Z m 
Y Y Y mn Y 

is defined for 37 @ supp p0 ~) (supp f(2) is the region where f(2) 4= 0). S 
describes the internal forces and is introduced to provide the stability with 
respect to the forces of mutual attraction of the elements of each particle. 
The expression for T~ n is chosen in analogy to the one for point particles 
(see Infeld & Plebanski, 1960), Z~ describing the world line of some element 
of one of the bodies. The expression (2.2a) is written in a fixed reference 
frame: this expression would change under coordinate transformations. We 
restrict our attention to the harmonic coordinates (see, e.g., Fock, 1964): 

( x / ( - g ) f f  ~) = o (2.3) 
~x n 
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In these coordinates equation (2.1) may be written as 
D h  mn = K mn 

where 
K m n :  2 k [ T  mn l gmn(Tabgab)] -L vr~m,abpn ],l ab ~)2hrnn 

- -  ~ ~ ~ab - -  ~X a ~Xb 

(2.4) 

hmn = gmn _ ~Tmn, ~mn = diag (1, - t ,  -1 ,  - I ) .  
The solution of (2.4) is sought for as the asymptotic expansion in powers 

of k: 

r hmn = Dret * K m n ( r -  1 hab) (2 .5)  

oh rnn = 0 

along with the solution of the equations of motion which follow from the 
conservation law: 

Tmn ;n = 0 (2.6) 

In equation (2.5)Dret(X) = ( 2 ~ ) - 1 0  (x  O) ~ [(::co) 2 - (~)21 is the retarded Green 
function of the wave equation, 0(x °) being the Heawside step function. We 
suppose that the convolution ofDre t with K mn in (2.5)exists for all r 
involved. The subscript r indicates the order of iteration. 

It is easy to see that in the first approximation the harmonicity condition 
(2.3) follows from (2.6) and, therefore, lh mn gives the approximate solution 
of equation (2.1). The calculations in the higher approximations are more 
complicated. In this case, however, one can use the considerations analogous 
to those of Foures-Bruhat (1952) and Kerr (1959) in order to state the 
fulfilment of the harmonicity condition. 

From (2.6), using (2.2a), we obtain the equations of motion for the 
elements of the bodies 

d Z  n d [, y]+rn dZ~dZ~_ DySn (2.7) 

where 

S n = S  nm Dy = dot aZ~@Y t ;m, , i , j  = 1 , 2 , 3  

We shall suppose that Smn describes the internal forces acting inside the non- 
rotating (or slowly rotating) bodies (e.g. internal pressure). In accordance with 
our previous supposition we assume these forces provide sufficient rigidity 
for each body, so that Dy = 1 + O(k) (O(X) means the quantity of the same 
order as X). We also suppose that Smn ~ O ( k ) T ~  n. This is in agreement with 
the above assumption, because the condition of stability gives 

dZ dZ  
sn  ~ (ranb)self-acti°n ds ds O ( k )  
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In the first approximation we have 

lhmn(x ) = kTr f d3ypO') [. dt O(x 0 - t) 5 [ ( x  0 - 0 2 - ( x  - ~ y ) 2 1  

"m "n __ ½(1  +2~ m n  Zy Zy - L;)~ 

%/(1 - Z ~ )  

Here Z~ = Z~,(t), the dot means differentiation with respect to the argument, 
x = (~, x°) .  

Neglecting the higher-order terms in equation (2.7) one can obtain the 
three-dimensional equations of motion in the form (we do not write out the 
explicit form of the intermediate formulae) 

dt '  8 [t - t '  - tZy - Zy, [] 

x {F[Zy, Z y , , ~ , 4 '  ] +~[Zy ,  Z y , , ~ y , ~ y , , ~ , Z ; , ] } = f f y  (2.8) 

Here Zy = Zy(t), Z-y, = Zy' (t'), fly are the spatial components ofS~ = (Sy, S°). 
Function ~ contains the terms proportional to'Zy and Zy, and is bounded for 
IZy] < c (c is some constant, c <  1,y ~ supp p): 

[l~l+lal] 
Ig [ f 'Y '  ~' ?' ~' Q I ~ < g ° ( c ) 1 ~ - 2 1  

I~14c<1, l/l<c, x g y  

(2.9) 

When the integration in (2.8) is performed, we obtain the functional- 
differential system containing the retardation 7yy,(t), where 

ryy,(t)= IZy( t )  - Z y ' ( t - r y y , ( t ) ) l  (2.1o) 

Making use of the simple relations 

'S 
z ( t  + u) = z ( t )  + Z(t)u + ~ ely clCZ(t + ~'u)u 2 

o o 

1 

z( t  + . )  = z ( o  + ~ d~ Z(t  + ~..). 
o 
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and the properties of equation (2.10), we can transform equation (2.8) as 
follows 

d 2y k fd3y,o(f,){F, [Zy(t), Zy,(O, Zy(t), 2/(01 
dt V/(1 - 2 : ~ )  - 4 r r  

+ iz,, z,,, 4 ,  &,, L ,  z-,,, = 
Here gl is the functional with the properties 

gl(C)[ tZy(t) l + IIZ;'ll~-ryy,] 
Ig, [z~ . . . .  , 2 j ,  tl I <<- I Zy (t) - Zy, (t) I 

We use the notation 

ttZtI~'~ = sup Iz(t) l 
t ~ [ t x , t  2 ] 

253 

(2.11) 

Suppose that one can write 

Sy = oSy[Z,Z] + 1Sy[Z,Z, 2I (2.12) 

where oSy and 1@. have the properties analogous to those of the second and 
the third term on the left-hand side of equation (2.11), respectively. From 
this it follows that 1S-y equals zero in the case of a uniform straight-line 
motion. 

We shall also suppose that the internal forces described by Sy act only 
inside the bodies, tn the case of two particles one can write 

P(Y) = Pa(Y) + Pa(Y), supp Pa C) supp p# = 0 

supp Pa, supp po are the connected sets. Here a, b = 1, 2 indicate the number 
of the particle. 

In accordance with our supposition of stability we have (from the considera- 
tion of a uniform straight-line motion when the external forces acthlg upon 
the particle are absent) 

f 3 t --t - -  d y p~(y )F, [Z:.(t), Z,.,(t), 2y(t), 2 / ( 0 t  - oS. [Z, ~1 = 0 

for fi E supp Pa(f), a = 1, 2. Thus the self-action force in the second term of 
(2.1 t)  is compensated of offy. The terms with the second derivatives contain 
the factor ~krni/R i ,~ 1 (we have assumed that oSy has the analogous structure), 
where 

mi = f Pi(f) d3Y, i = I, 2 

R i is the diameter of the ith particle, and it can be neglected after the self- 
action terms are removed. 
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Neglecting the terms proportional to the higher orders of  Rjrab,  where rab 
is the distance between the particles, we have 

8~ d < 
km b dt ~/(I --.7~a) [(Za - & ) 2 ( 1  - Z~ )  + ( ( Z  a - Zb )Zb)2 ]  3/2 

2(t - ZaZ,-b) 2 -  (i - Z2)(1 - Z~) 

X/ (1- -2a2)X/(1-2  2) 

( ( <  - - z:o2 )_ ( L ( z o  - - 2 1 )  
[ ( Z  a - Zb)2(1 -- Z ~ )  + ( ( •  - Zb )Zb )2 ]3 /2 ( l  - Za2)3/2(1 _ 2 ~ )  w2 

x [4(1 - Z a Z b ) ( 1  - Za2)Zb - [2(1 - 2~aZb) 2 + ( 1 - . ~ a 2 ) ( l - ~ ) ] Z a ]  

(2.13) 

Here Z i = Zi(t) is the three-dimensional trajectory of the ith particle. If 
12a I< 1, 12b t< 1, equation (2.t3) differs from the newtonian law of gravita- 
tion by the quantities of the second order in ]Z a I, [Z'b [- 

As distinct from the first-approximation equations of Bertotti & Plebanski 
(1960), Kutmel (1964), and Havas & Goldberg (1962), the equation obtained 
is an ordinary differential one. Equation (2.13) does not contain the retarded 
arguments, though the r retardation of interactions in our case is essential. We 
shall make some remarks concerning the second approximation. In this approxi- 
mation we must take into account (a) nonlinear terms in the field equations, 
(b) the second-order terms on the right-hand side of equation (2.1), (c) the 
terms which were omitted in the first approximation in the equations of 
motion. Corrections (b) and (c) lead to the terms which depend on the 
behavior of the particle trajectories on some finite interval of time in the 
past. One can also use here the expansion with respect to retardation and 
obtain the ordinary differential equations for the trajectories. The concrete 
calculations are tied to the choice of S ran. Corrections (a) give rise to the 'tail' 
terms (Bertotti & Plenbanski, 1960) depending upon all the past history of 
particles. 

These corrections are due to the terms (see (2.4) and (2.5)): 

Dret * [ 2 ( l P  lIab) 1 hab ~21hmn m,ab ~n _ OX a t)X b ] 

Using the expansion with respect to retardation and neglecting terms of the 
higher orders in k, one can easily obtain an expression in the form 
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: (t 3, (t '), 2a (t 3, 2 .  (t')] 
X 

1~ - ~ '  I I~' -za(t ' )1~1~ ' -Zb(t ' )12 

f[2-', 2a (t), Zb (t), 2a(t), 2b (t)l d3ap(~) f d3bp(5) f d3x ' 
12 - 2' 112' -Z~(t)1212 ' -Zb(t)12 

The terms which are neglected in this approximation contain the second 
dervatives and contribute to the orders (of the equations of motion) higher 
than the second one. The expression obtained will not lead to the 'taft' terms 
in the equations of motion. This means that the 'taft' effects (i.e. the dependence 
upon all the past history) are undetectable in this approximation. The same is 
true of the dependence upon the past history which is due to the finite re- 
tardation. Note that analogous considerations are valid up to sufficiently 
high orders of the approximations involved, but not to the arbitrary orders. 

The expressions obtained are well defined, but nothing has been said about 
the convergence of the integrals which are neglected in the course of approxi- 
mation. Their convergence, however, does not affect the fact that the approxi- 
mate solution obtained is the asymptotic solution of equation (2.1): 

Gmn(h ab) + kTmn(h ab) = higher orders in k 

this can be verified explicitly. 
One may suppose that this asymptotic solution gives a sufficiently good 

approximation to the exact solution. This statement is confirmed by the con- 
siderations of some simplified cases in the initial value problem which are 
similar to making estimates in the existence-uniqueness theorems (Choquet- 
Bruhat, 1970; Fisher & Marsden, 1972). However, these estimates appear to 
be uneffective in real applications. It is worthwhile to note the result of Fisher 
& Marsden (1973) which allows one to assert that the solution of linearised 
field equations is, in a certain sense, close to the exact one. However, their 
paper also does not contain the estimates which could be applied to the 
approximation methods in the problem of motion. The general problem of 
proving the approximations in general relativity still remains unsolved in spite 
of its importance (see Ryabushko, 1971). 

3. Some Aspects of' the Approximations in the Equations of Motion 

The derivation of the equations of motion (2.13) involves the expansion 
with respect to retardation ~'a, (see (3.10)), in which the higher-order terms 
being neglected, that is an approximation like x (t - r) ~ x (t) - rx (t). It is 
well known (Elsgolts & Norkin, 1971) that such operation often gives an 
equation with properties different from those of the initial equation of motion. 
As we shall see later, taking account of this is important when we deal with the 
self-interaction terms. 
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Taking into account the condition of stability, we can write in the first 
approximation (rotation is neglected) 

Zy(t) = Zi(t) + y,  ~ E supp Pi (3.1) 

where ~ ( t )  is the trajectory of some element of the ith body. We assume here 
that the point 27 = 0 is situated inside the ith body (we consider one of the 
bodies). This means that the initial forces provide a sufficient rigidity for the 
particles. The solution of equation (2.10) is then estimated as 

7iy(t ) <~ (1 - -  C )  - 1  127 ] 

if 

[Zi(t)[<~c<l, fi ~ supp pi 

Substituting (3.1)into (3.11) and taking into account the properties of the 
functional gl from equation (2.11) and using equation (2.12), one can 
rewrite the equations of motion of the ith particle in the form 

d Z i 
+ G(Zi, Zi, t) = H(t) (3.2) 

dt X/(1 - 2~) 

where H/(t) describes the forces external with respect to the ith particle; 

G(}i,~.,t)=k f d3ypi(~) h(t, 2i,~,27) (3.3) 
IYt 

the functional h (t, ~i, ~ ,  27) depending upon the behaviour of Zi, Zi on the 
segment [t - ~'iy, t]. If S has the properties similar to those of the terms in 
(2.11), which are due to the gravitational forces, then h(t, Zi, Zi, f~) may be 
considered as a sufficiently smooth function of t and integrable function of 
27, and for 1-~1 1 <~ c < 1 

] h (t, X 1, X2, y) I <<- h 0lt.~: 1]~_ r 0y (3.4) 

Pi(27) is also supposed to be integrable. 
Using the explicit form of equation (2.11), one can show that the opera- 

tor G in (3.2) is Lipshitz-continuous in a certain sense, and proves the existence- 
uniqueness theorem in analogy to the corresponding theorem for equations of 
the neutral type (Driver, 1963). 

If we transform the self-interaction terms using the expansion with respect 
to the retardation 7iy in the integrand of (3.3) and perform the integration, 
we shall obtain the equation of motion containing the derivative of the particle 
acceleration with respect to time. The equation obtained would be analogous 
to that of Dirac (1938). The presence of the third derivatives of the particle 
trajectories creates some difficulties. In particular, in order to remove the 
unphysical solutions additional assumptions are needed (Rohrlich, 1961). We 
shall make a few remarks concerning the equations with the third derivative 
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which is the consequence of the point structure of the particle. The third deriv- 
ative arises in the calculation of the self-interaction force. One can mention two 
ways of derivation: (1) The self-interaction force is calculated for an extended 
body and taking the limit r -+ 0 is used (r is the size of the particle). (2) The 
resulting expressions are obtained through the renormalisation procedure from 
the singular potentials. 

Both kinds of derivations have a restricted range of validity (Ginzburg, 1946, 
1969). Both the methods cannot be considered as quite rigorous ones because 
the operations used here could spoil the uniqueness of solutions and would 
lead to other troubles. The runaway solutions in this case are understandable 
from the following point of view: the energy necessary for such a motion is 
extracted from tile infinite self-energy of the particle (Teitelboim, 1970). One 
should also take into account that the classical equations are invalid at small 
distances. 

For these reasons it would be desirable to have the equation of motion of 
an extended particle. This problem was considered in electrodynamics by 
Fradkin (1950), Belousov (1939), Ginzburg (1946) and Kaup (1966). The 
most satisfactory solution of this problem is due to Kaup. His equation differs 
from that of Dirac (1938), and possesses good physical properties. However, 
the results of Kaup (1966) are not applicable to our case without making sub- 
stantial modifications. In this connection we shall show that equation (3.2) 
does not admit the 'runaway' solutions by means of an alternative method. 

Suppose that the distance between the particles increases to infinity so that 
the interaction vanishes: Hi(t) ~ O. It is easy to prove that there exists a 
function f ( t )  such that 

f ( t )  >1 Ifii(t) t, f ( t )  -+ 0 
t--> oo 

fo = sup ( f ( t  - d ')  If(t)] -I} < oo 
t~[t0,oo) 

Here [Zi [ 4  c < 1, d '  = (1 - c)-Id,  d being the diameter of the particle. 
From (3.2)-(3.4) one obtains (we suppress the index i) 

[ U( t ) I - a l l  ~][tt_a ' < [H(t) [ (3.5) 

whe re U = Z (1 - 2 2) - 1/2, a = 2zrk p o d 3h o, O o = max p 05). Using (3.5) we 
obtain 

II Df -1117o < (1 - a fo ) - l ( l lH f  -I lito + aUo) (3.6) 

where U o = II r2 It~0o_a, is defined by the initial data given on the segment 
[to - d', to]. It was supposed here that af  o < 1. This inequality is admissible 
because in the real case the maximal density is small: Po ~ mR -s, kmR-1  < 1 
(moreover, afo ~ 1). From (3.6) we infer that ~-+ 0 for t -+ 0% i.e. the 
equations of motion do not admit the unphysical solutions. 
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Using (3.6) it is easy to estimate the error of  the approximation when we 
neglect the self-interaction terms in (2.11): 

la(LLt)l < f(t) 

i.e. the self-interaction terms do not contribute to the first order of  our 
approximation. This is in agreement with the result of  Carmeli (1968), 
However, the self-interaction effects must be taken into account in the 
second approximation and it is desirable to give a more convenient expression 
for (3.3). The formula which could be obtained by expanding with respect to 
retardation leads to the 'runaway' solutions. However, it will be easy to obtain 
a more convenient equation if we use the expression for the second derivative 
from the first-order equation (2.13). The equation that can be obtained will 
not contain the derivatives of  the order higher than the second. An analogous 
procedure can be applied to the higher approximations. 

Thus far we have restricted our attention to the self-interaction terms. The 
expansion with respect to the retardation was used also in the terms describing 
the action of one particle on the other. This procedure can be justified, if the 
resulting expressions do not contain the derivatives of  the order higher than 
the second. The estimates are analogous to the corresponding ones in the case 
of  small velocities (Zhdanov & Pyragas, 1973) and we only note the main 
features of our reasoning. In this case the finite structure of  the particles does 
not give rise to any difficulties and we can regard the particles as the point 
ones. The terms neglected in the approximation can be written as (cf. equation 
(2.9)) 

I g~(t) - Z b ( t  - ra~,(t)) I 

where if '  satisfies the following estimates 

IF" ( s ,  Y , Z ,  u,  V ,W)  l ~Fo(c)(I FI +lWl) 

for 

I l l<c<1 ,  IUl<c 

Using the above formulae one can estimate the error of approximation in 
analogy to (Zhdanov & Pyragas, 1973): 

(1) for the characteristic time of  a finite motion (e.g. the period of the 
revolution of a two-body system), 

(2) for the whole time in the case of  an infinite motion using the conditions 
of complete dispersion (their proof in our case is identical). 

The result shows that the error is of  the order O(km/r), where r is the 
characteristic or initial interparticle distance. 



THE TWO-BODY PROBLEM OF GENERAL RELATIVITY 259 

References 

Belousov, A. P. (1939). Journal of  Experimental and Theoretical Physics, 9, 658. 
Bennewitz, A. and Westpfaht, K. (1971). Communications in Mathematical Physics, 

23,296. 
Bertotti, B. and Plebanski, J. (1960).Annals of  Physics (N. Y.), 11,169. 
Carmeli, M. (1968). Nuovo Cimento, 55B, 220. 
Choquet-Bruhat, Y. (1970). Journal of  Mathematical Physics, 11, 3228. 
Dirac, P. A. M. (1938). Proceedings o f  the Royal Society, A, 167, 148. 
Driver, R. D. (1963). InlnternationalSymposiumonNonlinearDifferentialEquationsand 

Nonlinear Mechanics, p. 474. Academic Press, New York. 
Elsgolts, L. E. and Norkin, S. B. (1971).Introduction to the Theory o f  differential 

Equations with Deviating Arguments (in Russian). Nauka, Moscow. 
Fisher, A. E. and Marsden, J. E. (1972). Communications in Mathematicai Physics, 28, 

1. 
Fisher, A. E. and Marsden, J. E. (1973). Bulletin o f  the American Mathematical Society, 

79, 995. 
Fock, V. A. (1964). Theory o f  Space, Time and Gravitation. Pergamon Press, London. 
Foures-Bruhat, Y. (1952). Acta Mathematica, 88, 14t. 
Fradkin, E. S. (1950). Journal o f  ExperimentaI and Theoretical Physics, 20, 211. 
Ginzburg, V. L. (1946). TrudiFIANSSSR, 3 (2), 193. 
Ginzburg, V. L. (t969). Uspekhifizicheskih nauk, 98 (3), 569. 
Havas, P. and Goldberg, J. N. (1962). Physical Review, 128,398. 
Infeld, L. and Plebanski, J. (1960). Motion and Relativity. Pergamon Press-PWN, New 

York-Warszawa. 
Kaup, D. J. (1966). PhysicalReview, 152, 1130. 
Kerr, R. P. (1959). Nuovo Cimento, 23,469, 493. 
Kuhnel, A. (1964). Annals o f  Physics (N. Y. ), 28, 116. 
Rohrtich, F. (1961). Annals o f  Physics (N. Y. ), 13, 93. 
Ryabushko, A. P; (1971). Izvestiya AN Belorusskoi SSR, 1, 90. 
Stephani, H. (1964).ActaPhysicaPotonica, 36, 1045. 
Teitelboim, C. (1970). Physical Review D, 1, 1572. 
Zhdanov, V. I. and Pyragas, K. A. (1973). Preprint ITP-73-45P, Institute for Theoretical 

Physics, Kiev. 


